An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives
نویسندگان
چکیده
We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.
منابع مشابه
X Bandits with concave rewards and convex knapsacks
In this paper, we consider a very general model for exploration-exploitation tradeoff which allows arbitrary concave rewards and convex constraints on the decisions across time, in addition to the customary limitation on the time horizon. This model subsumes the classic multi-armed bandit (MAB) model, and the Bandits with Knapsacks (BwK) model of Badanidiyuru et al. [2013]. We also consider an ...
متن کاملLinear Contextual Bandits with Global Constraints and Objective
We consider the linear contextual bandit problem with global convex constraints and a concaveobjective function. In each round, the outcome of pulling an arm is a vector, that depends linearly onthe context of that arm. The global constraints require the average of these vectors to lie in a certainconvex set. The objective is a concave function of this average vector. This probl...
متن کاملResourceful Contextual Bandits
We study contextual bandits with ancillary constraints on resources, which are common in realworld applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, Dudik et al. (2011)) and ...
متن کاملLinear Contextual Bandits with Knapsacks
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesn’t exceed the budget for each ...
متن کاملSemi-Bandits with Knapsacks
We unify two prominent lines of work on multi-armed bandits: bandits with knapsacks and combinatorial semi-bandits. The former concerns limited “resources” consumed by the algorithm, e.g., limited supply in dynamic pricing. The latter allows a huge number of actions but assumes combinatorial structure and additional feedback to make the problem tractable. We define a common generalization, supp...
متن کامل